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The principles of the recent calculations of critical exponents from three- 
and two-dimensional field theory are reviewed. They rely on the Callan- 
Symanzik equations, diagram calculations, and on the characterization of 
the asymptotic behavior of perturbation series at large order. We then 
present new results concerning the normalization of the large-order 
behavior. 
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1. I N T R O D U C T I O N  

Field theoretic techniques applied to the problem of  critical phenomena have 
recently been able to produce very accurate values for the three-dimensional 
critical indices/1~ In addition to all the previously available information, they 
involve recent progress concerning the quantitative characterization of  the 
asymptotic orders of  the perturbation series, when the order goes to infinity/2~ 
In this article we report some new results concerning this large-order problem, 
but it seemed to us that it might be useful at this stage to summarize the 
various logical steps combined in these 3D calculations. This article thus 
contains two very different parts. In the first, we expose without any deriva- 
tion the set of  principles underlying these calculations. In the second, we 
present the computation of a Fredholm determinant which occurs when one 
looks for the absolute normalization of the coefficients of  very large orders of  
perturbation theory. 
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2, PRINCIPLES OF THE T H R E E - D I M E N S I O N A L  C A L C U L A T I O N S  
OF CRIT ICAL INDICES F R O M  FIELD T H E O R Y  

It is convenient to distinguish the following steps: 

1. Use of Wilson's renormalization group theory. 
2. Wilson's Feynman graph approach, which leads to the understanding 

that the Callan-Symanzik equations govern the scaling properties 
near Tc and may be used to generate the e expansion. 

3. Direct use of the Callan-Symanzik equations in three dimensions. 
4. Systematic calculation of several orders of the perturbation series 

(up to six loops) in three dimensions: 
5. The obtaining of the large-order behavior of the perturbation series 

by instantons. They govern the instability of the vacuum when the 
coupling constant becomes attractive and reveal the nature of the 
divergence of the series. 

6. Summation techniques based on the large-order information, which 
lead to accurate estimates from the perturbation series though the 
series is divergent and the fixed-point value of the expansion 
parameter is of order unity. 

2.1. Step 1 

The general ideas of Wilson's renormalization group approach are 
presented in great detail in several books and articles (3~ and need not be 
repeated here. 

2.2. Step 2 

Similarly, the basis of the use of Callan-Symanzik equations in the 
problem of critical phenomena has been exposed at length elsewhere. (4~ 
However, it may be useful to restate here the following features. In the 
Landau-Ginzburg-Wilson theory, an N-component order parameter 0 0 = 
(}1 .... , }N) is introduced. Its spatial distribution in d-dimensional space q~(x) 
is weighted by a probability measure 

exp(-S{~}) 

with 

S{q~} = f dax {�89 = + �89 2 + �88 =} (1) 
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In addition, if r is decomposed into Fourier components, the original 
lattice spacing a of  the underlying magnetic model forbids variation of r 
with a wavelength smaller than a and therefore cuts off the wavenumbers 
at a value A ~ 1/a. The M-point correlation functions given by the 
expectation value [with the respect to the normalized weight e x p ( - S ) ]  
(r -.. r depend on r0, u0, A. -It is convenient to eliminate ro at 
the benefit of the correlation length ~:. Near the critical point ~ is very large 
and we are interested in correlation functions in the regime [x~ - xj[ >> a, 
~: >> a. In addition, Uo is a dimensional parameter proportional to a a-~ and 
thus it becomes very large in the limit of interest in less than four dimensions. 
It is therefore convenient to introduce a renormalized coupling constant g 
instead of uo and to modify the scale of the correlation functions. This may 
be done in the following way. Let 

~(Pl +" "  + pM)GM(pl, al ;."; PM, ~M) 

= f ( ~ I ( X l )  "'" r exp[i(plx l  + ... + pMXM)] dx~ ... dXM (2) 

the M-point, connected (i.e., it contains only connected diagrams) correlation 
function in momentum space. We define the correlation length ~: and the field 
strength Z by parametrizing the behavior of G2 near zero momentum by 

G2(p, a; - p ,  /3) = Z 1/~2 + p2 + O(p4) (3) 

and the dimensionless renormalized coupling constant g by 

G,(0, ~; 0,/3; 0, ~,; 0, ~) = ~:'§ + ~.,SB~ + ~,~B,) (4) 

The renormalized correlation functions defined as 

G~ ~ = Z-MI2GM (5) 

may be expressed in terms of  ~ and g (instead of Uo and ro) and they have a 
finite limit when the lattice spacing a vanishes. 

One of  the main advantages of this parametrization is that the dimen- 
sionless renormalized coupling g remains finite 4 also when the bare 
dimensionless coupling uo~ ~-a goes to infinity. 

These renormalized functions G~ ~ satisfy a first-order partial differential 
equation, first obtained by Callan and Symanzik (6> in the follov~ing way. 
Let us vary the temperature scale ro, or equivalently the correlation length 
with fixed values for u0 and the lattice spacing a. The coupling constant g 

4 This has been rigorously proved for N = 1 in Ref. 5, using the Lebowitz inequality. 
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defined by (4) is modified by this variation. Therefore we perform the 
derivation 

and obtain from (5) 

~g o { e ~  + e~? %,oFg 

o r  

~/~. d I 
Z-  ~ ~ II,,o,O ZM~G~) 

+ T f G~) 
= Z-M:2 Oro aG~ 

-- O~ ~o,~ ~ro 

- 3(g) ~g 2 ~(g) G~) = ~..~, (6) 

in which we have defined 

J%,,~ D] lnZ (7) ag and ~/(g) = _ e ~_~ %,'~ 3(g) = - ~  

For momenta large compared with the inverse correlation length ~-1 (but of 
course small compared to the inverse lattice spacing A, which has gone to 
infinity) the right-hand side is negligible compared to the left-hand side 
(technically this is true order by order in a double expansion in powers of g 
and 4 - d). The reason is that OG~/~ro contains only diagrams with one 
propagator squared which fall off more rapidly when the external momenta 
go to infinity. Therefore in this regime a- l>> ]Psl >> f - l ,  G~ ~ goes to 
G~a~, which is a solution of 

- G~s,a~ = 0 (8) - 3 ( g ) ~  -~n(g) ,R> 

In a field theory g can be chosen arbitrarily. In this problem it is expressed in 
terms of to, uo, and a. In the limit uU ~- e)a --> 0 one shows that 

g -+ g*: 3(g*) = 0 (9) 

Consequently G ~ ( ~ ,  g*) is proportional to ~,r For the two-point 
function, noting that G~m(p, f, g*) is dimensionally of the form (1/p2)f(pf), 
this leads to 

G~R>(p, f) ,., C(pf)"(o*)/p 2 (I0) 
p~>> l 

from which one sees that ~(g*) is the usual ~ exponent. All the scaling laws 
and properties have been derived from this procedure. It relies on the 
existence of a fixed point g* such that fl(g*) = 0 and its stability requires 
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f l ' (g*) > 0. It is a crucial and implicit assumption that the renormalized 
Green's functions are finite for g = g*. Near four dimensions, if d = 4 - e, 

N + 8  2 N + 2  
~(g )  = - r + "--"6"-- g + O(eg2' E3)' ~7(g) = 72 

and thus there is a stable fixed point 

_ _  g2 + O(~g2, ca) 

(ll) 

6c N +  2 
g* = ~ U  + 8 + O(e2)' 7/(g*) = 2(U + 8) 2 e 2 + O(e a) (12) 

Higher orders in this direction have led to the calculations of the critical 
exponents as E series. It is now known that these series are divergent. <14) 
However, they give very reasonable values for E = 1, either if truncated after 
two or three terms, or if resummed adequately. 

2.3. Cal lan-Symanzik  Equations in Three Dimensions 

The E expansion has been introduced for two purposes. It allows one to 
define a critical theory by neglecting the right-hand side of Eq. (6). Second, 
it gives a small parameter for the fixed point g* and thus for the critical 
exponents. The 1IN expansion has the same properties and allows one to 
define a critical theory directly in three dimensions. It has been proposed in 
Ref. 6 that the existence of a three-dimensional critical theory implies that 
the right-hand side of (6) should be globally negligible for large p~:, even if it 
is not true order by order in g. This may be supported by the e expansion, 
which together with the short distance expansion allows one to show that, 
to all orders in E, 

AG (R)I~(m2 1"-'2 "~ A p -  zI~ + Bp-~Z-  ~)/~ (13) 

Therefore, extrapolating to three dimensions, as long as ~ remains smaller 
than one, the right-hand side of (6) can be globally neglected. The problem is 
reduced to a direct computation of  f l (g)  and ~7(g), and then to the search of 
the fixed point g* defined by fl(g*) = 0, f l ' (g*) > O, which is now a finite 
number, and finally to the computation of~7 = ~7(g*). Similar equations hold 
for v and the other critical exponents. 

2.4, Three-Dimensional  Calculations 

After the promising initial calculations of  Ref. 7 a very extensive program 
of calculating the power series expansion of the functions/3(g), ~(g), and 
~/4(g), from which one deduces ~ and v, was initiated by Nickel (8) and ex- 
tended in Ref. 9. All Feynman diagrams involving at most six loops, that is, 
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a priori 18-dimensional integrals, have been computed, together with their 
symmetry factor, which depends on N, the dimension of the order parameter. 
In order to decrease the number of integrals for a given diagram, these authors 
used the fact that one can compute analytically in three dimensions any 
one-loop subgraph with an arbitrary number of lines leaving the loop. The 
technical details are presented in Refi 10. The total number of  diagrams is 
1142. Similarly these authors have computed the same functions in two 
dimensions up to four loops. The direct use of these results to calculate 
critical exponents is not possible. The series are badly divergent and the fixed 
point is a finite number. However, the control of  the nature of the divergence 
of the series turns out to be a powerful tool for handling this problem. 

2.5. Large Order  Behavior of  Per turbat ion Series 

Perturbation series in many problems of  quantum mechanics or field 
theory are asymptotic but divergent for any value of  the coupling constant. 
The origin in the complex coupling constant plane is an essential singularity 
and the first indication of this fact was given by Dyson, (m who argued that in 
quantum electrodynamics, if one changes the sign of the fine structure con- 
stant a, the vacuum would become unstable since electron-positron pairs 
would be pulled out of the vacuum. This argument has recently been made 
quantitative and it can be applied to many problems. 

Let us first discuss a very simple example from quantum mechanics. 
Consider the one-dimensional anharmonic oscillator 

H = �89 + x ~) + gx 4 (14) 

and imagine that we want to calculate the ground-state energy in perturbation 

c o  

E(g)  = 1 +  ,gKE  (15) 
1 

The EK have been computed up to K = 150 (Ref. 12); Ez = 0.75, E2 = 
-2.625,  Ea = 20.8125, E4 -~ -241.289 ..... but ETs is already of  order 10144. 
The series (15) looks divergent. This, and its rate of divergence, can be shown 
in the following way. Let us express E(g) as the zero-temperature limit of  the 
free energy 

1 1 Tr  e -  BH E ( g ) = ~ +  lim -- log (16) 
B~o fl Tr  e-Bno 

and express the partition function by the Feynman-Kac formula 

Tre -BH f { f : [ 1  ]}  F(g) = Tr e-B'~--------~ ~ ~x ( r )  exp - (fc 2 + x 2) + gx 4 dt (17) 
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(8~t)) f Kl~ 
which are 

in which we integrate over all periodic paths such that x(0) = x(3 ). The 
function F ( g )  is analytic in the complex g plane cut along the negative real 
axis and for large g behaves like gl/3. The coefficients of its expansion in 
powers of g, F ( g )  = 72 FKg ~:, may be expressed as the moments of the 
discontinuity of F(g) ,  i.e., 

FK = f c ~  g-(~:+l)F(g ) (18) 

in which the contour C encloses the negative real axis. If  we substitute the 
representation (17) of F, we obtain for FK an integral over g and paths, which 
for large K can be evaluated by the saddle-point method. The saddle points 
are given by the conditions 

g + dt 22 + ~ + gx  4 

2~ = xc + 4gcxc a (19) 

K/gc = - dt Xc~(t) (20) 

From the second equation we see that g~ is, as expected, negative, and 
through the rescaling 

x~ = (_gc)- l /2yc (21) 

these equations become 

Yc = Yc - 4Yc ~ (22) 

f; g~ = - ( l / K )  dt yr (23) 

which show that g~ is infinitesimal for K large. It is convenient to introduce a 
mechanical analog to depict Eq. (22), which represents the motion in time of 
a particle located at yc(t) moving in the potential V = ( _ 1 y 2  + y4)  
(Fig. 1). We look for periodic solutions, and an elementary calculation shows 

Fig. 1 

L 
hVly) 
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that the leading contribution is given by the paths of period/3 of minimal 
action since 

f; S(xc,  gc) = K log g~ + dt (�89 2 + �89 2 + gcx~ 4) (24) 

and 

exp[-S(xc ,  go)] = [exp(Kln K - K)]/ - yc 4 dt (25) 

A periodic path in this potential corresponds to a fixed energy, and in the 
large-/3 limit the lowest action corresponds to the periodic path that starts 
infinitesimally close to the origin, goes to y+ (or y_), and comes back: 

yc(t) = +_ ~/7 z [1/cosh(t - to)] (26) 

f +~ y~  -= �89 (27) dt 

It has been named " ins tanton"  or "pseudoparticle" in the literature. We 
thus obtain 

Fx ~ K ! ( - 3 )  K (28) 
K ~  co 

Fluctuations around the saddle point (22)-(23) may be systematically calcula- 
ted. The parameter of this saddle-point expansion is 1/K. Equation (22) is 
invariant under time translation, and the origin to on the periodic trajectory 
is arbitrary. One may integrate properly over to; this may be done by the 
method of collective coordinates. The result is 

F~ ~ flI '(K + �89 + O(1/K)] (29) 
K - - + ~  

We now have to take the logarithm of F ( g )  and divide by - I//3 to obtain 
E(g) .  At large order, this is very easy. Indeed 

log(1 + Fi g  + ... + FKg K + "") 

= F~g + ... + gK[FK -- F1FK-1 + F~:-2(F2 - FI 2) + ""] 

and since FK grows like K!, F~:-I/FK is of order 1/.K, FK-2/FK of order 1/K 2, 
etc. Therefore we can neglect all these terms. A diagrammatic way of visualiz- 
ing this property consists in noticing that the diagrams that contribute to the 
free energy are only the connected ones and at large orders there is only a 
fraction 1/K of disconnected diagrams. This completes the asymptotic 
calculation of E~:: 

EK ~ - -  F(K + �89 + O(1/K)] (30) 
K 
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The same result can be obtained also by using the traditional WKB method/12~ 
However, it is possible to show that in the one-dimensional quantum 
mechanical case, the approach presented here and the WKB method are 
deeply connected and they give identically the same answer. This makes 
manifest the divergence of the perturbation series of E(g) .  

Let us apply the same procedure to the Landau-Ginzburg-Wilson 
system. The M-point functions are given by the functional integral 

GM(X1, 0:1 ;'" ; XM, r = f ~Cpc~z(Xl) "'" r exp( -  S{q0}) (31) 
f N9 exp( -  S{9}) 

S(q)) = j dax {�89 2 + }rn2~ 2 + } gin ~- e(~2)2 + }(ro - rn2)~ 2} (32) 

in which m is the inverse of the magnetic susceptibility X- The Kth order of 
the expansion of GM in powers of g is obtained by a contour integral as in 
Eq. (17), and we apply the saddle-point method to the integrations over g and 
~o(x), 

3/8~,(x ) ~ l o g g  + dax [�89162 = + �89162 =) +-~gm4-a(r ] = 0 

(33) 

The mass counter-term of Eq. (32) is only relevant at the subleading order, 
which is discussed below. The variational equations are then 

K + } m~_ a f dax (q~2)2 = O, Aq)c ~ = m 2 9 J  + gom 4- a(q~2)qoJ 
goc 

or with the rescaling 

we obtain 

r e (d -  1)/2 
cPc~(x) = (_go)1/2 q~"(mx) (34) 

gc = 4"K ((p 2)2 dax (35) 

Aq)~ = qbo~ -- 4q)o~(I)~ ~ (36) 

Here again gc is negative and it goes to zero when K goes to infinity. At the 
saddle point, an easy calculation gives 

E 4 exp[ -  S(~)]  = f (q~ 2)2 dax exp(Klog K - K) (37) 

showing a behavior very similar to that of the anharmonic oscillator. The 
leading contribution is thus given by the instanton, the solution of (36) that 
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minimizes the integral of (~2)2. This solution is spherically symmetric, (13) 
nodeless, and corresponds to a fixed direction in internal space 

q)J = u~f(x), u 2 = 1 (38) 

( d  2 d - l d x )  
+ x f (x)  = f (x )  - fa(x) (39) 

At large distance f (x )  decreases as e-Xx -(a-~/2 The solution has been 
determined by numerical computation in two and three dimensions. (1~ 

This shows that any Green's function of the theory has an expansion in 
powers of g which at large order behaves as gKF(K + b)aKe. The number a 
is the same for all Green's functions independent of the number of external 
legs of  the values of the external momenta: 

o= 

The number b requires a more detailed calculation; for an M-point function 

b = � 89  N +  d -  1) (41) 

The constant c is a function of all the variables, the external momenta, etc. 
It is calculated in the second part of this article for the functions that appear 
in the Callan-Symanzik equations. 

2.6. Large-Order  Behavior and Summat ion  Techniques 

We have seen in the previous section that perturbation theory is divergent 
for any value of the coupling constant. However, with the use of the large- 
order information, it is possible in various ways to obtain convergent algo- 
rithms. Let us study as an example the problem of the ground-state energy 
of the anharmonic oscillator of Eqs. (14)-(15) for a coupling constant equal 
to unity. If  we use the truncated series for g = 1 the result is absurd. How- 
ever, since we know that EK grows as K!, it is indicated that we perform a 
Borel transformation 

f? E(g) = dt e -~ ~, (tg) K EK (42) 
o 

(in which we recover the ordinary perturbation series if the summation and 
integration are interchanged). There is actually a proof  ~ls~ that E(g) is 
indeed given by (41). The Borel transformation of  E(g) 

o o  

f(b) = ~ b K EK (43) 
o K !  
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is analytic in a circle of  radius 1/3 as indicated by (28) and the singularity 
closest to the origin in the b plane is at b = -1 /3 .  The function f(b) is 
furthermore analytic in the vicinity of the real, positive axis. If  we replace 
f(b) by 

fL(b) = O ~.. (44) 
0 

we recover the perturbation series truncated at order L. But we can replace 
the function fL(b) by a rational function, a Pad6 approximant, before per- 
forming the integration (42). In Ref. 1 the authors have taken as an example 
L = 6; the error between the approximate value of E(1) and the exact one 
(which can be obtained by variational methods) is 10 .3 . 

However, we can use more than just the K! of  EK and notice that Eq. (30) 
implies that f(b) has a square root branch point at b = -1 /3 .  Assuming 
analyticity in the whole b plane cut along the negative axis from - 1 / 3  to 

- 0% we can map the whole b plane in the interior of a circle by the conformal 
mapping 

z = [(1 + 3b) 1/~ - 1]/[(1 + 3b) 1/2 + 11 (45) 

The natural representation of the corresponding function of  z is a Taylor 
expansion and the knowledge of L coefficients E~: determines the L first 
coefficients aK of the representation 

L 

fL(b) = ~ axzK(b) (46) 
o 

which is then transformed by (42). With the same value L = 6 the error 
drops to 3 • 10 -4. It is thus manifest that the large-order behavior is a 
useful systematic guide to transforming the knowledge of  the low-order 
coefficients into a modified convergent scheme. 

These ideas have been developed and applied with success in Ref. 1 to 
the calculation of the critical exponents. The problem is exactly of the same 
nature. The fixed point is of order unity. The series diverges in the same 
fashion. However, the critical exponents have been computed with an 
accuracy which is higher than that achieved by all previous methods. 

3. N O R M A L I Z A T I O N  OF THE L A R G E - O R D E R  E S T I M A T E S  

Previously we have shown that the coefficients of  all the Green's func- 
tions at large order behave as 

gKF(K + b)aKe[1 + O(1/K)] (47) 

The calculation of  a relies on the value of the classical action for the instanton 
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solution. We present here the calculation of b and c for the functions that 
appear as coefficients in the Callan-Symanzik equations, from which the 
critical exponents are computed. The technique involves the calculation of 
the contribution to the functional integral of the Gaussian fluctuations near 
the instanton solution. The main body of the calculation is to evaluate the 
determinant of the quadratic form of the fluctuations around the instanton, 
namely 

I 1 } Az = det 1 + -A + 1 [-3qS~2(x)] (48) 

( l } 
Ar = det 1 + - A  +-------1 [ -  ~2(x)] (49) 

in which we have distinguished between longitudinal fluctuations in the 
direction of a given classical solution and transverse fluctuations along 
perpendicular directions in internal space; Ar is needed only if N -r 1. 

Some caution is, however, needed in order to take into account properly 
the zero modes. Indeed the classical equation (36) has an infinite set of 
lowest action solutions which differ from one another by a translation, or an 
O(N) rotation in internal space. It follows from these invariances that 
(i) the operator [ - A  + 1 - 3qsc2(x)] has a zero eigenvalue d-fold degenerate, 
the corresponding eigenvectors being ~c(x)/Sx~, ~ = 1, 2 ..... d; (ii) the 
operator [--A + 1 -- qS~2(x)] also has a zero mode corresponding to the 
eigenfunction q% itself. 

These modes should be properly quantized, by using the collective 
coordinates method, r which performs the integral exactly (without Gaussian 
approximation) in the direction in which the action S{qb} remains constant. 
The result is then the product of a simple Jacobian corresponding to the 
collective coordinate change of variable and of the determinants of the 
operators restricted to the subspace orthogonal to the zero eigenmodes 
AL • At'. 

This gives for the 2M-point function at zero external momenta 

[G2M(O, n;.. " O. n)]~: = [exp(--Sol)]J[4~]  M F(M + I/2)F(N/2) 
"' " a /~ F(M + U/2) 

x (AL • V2(Ar•189 + 2)I2G2e(0)]} 

in which 
(50) 

o(1)1 exp(-S~ = (2rrK)112 (I4) [ + 

= f d'x (52) 
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and the Jacobian 

d l~(N/2) Kt(N+a)/2]-l(2~r)-al2-(~-l)/2 (53) 

The mass counterterm in the action is responsible for the last factor in (50) and 
it involves the divergent integral 

G2"(O) = f daq 1 (54) (2~)a q2 + 1 

which will be discussed below. 
The calculation of the integrals Ip is done by numerical integration and 

the problem is reduced to that of computing the A'. We found it convenient 
to introduce the function 

I 3z (i)c2(x) ] (55) D(z) = det 1 -zX + 1 

from which we recover ALa and Ar • as 

D(z) det{1 - [3z/(--A + 1)](I)c 2} 
= AL• lim (56) D(1) = limz__,l (1 = z) d zol (1 - z) a 

in which the last determinant is d over d in the subspace of the longitudinal 
zero modes 8,(Pc. This leads to 

Similarly we obtain 

zX~-' = D(1/3)/4 (58) 

D(1/3) = lim [D(z)/(1 - 3z)] (59) 
z~113  

This determinant D(z) may be expressed in terms of  the eigenvalues (~v A~ 
defined by the equation 

(-A~b, + ~b,) = A,3cI)~2(x)~b, (60) 

a s  

in which it is understood that an m-fold degenerate eigenvalue appears m 
times in the product. In two or more dimensions this infinite product is 
divergent. The mass counterterm of Eq. (50) is also infinite, but since 

(l/a.) = G2"(0)312 (62) 
n 
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as may be checked by expanding D(z) at first order in z, there is an exact 
cancellation in less than four dimensions when we combine the mass counter- 
term and the divergent part of D(z) at z = 1. We can thus eliminate the 
counterterm contribution from (50), absorb it into D(z), and define the 
renormalized convergent determinant 

DR(z) = ~ (t  - Z'~e~I~"hn] (63) 

The convergence of the infinite product holds provided that 

1/.~n 2 < oo 
r t  

which is true below four dimensions since the sum on the left-hand side is 
related to the one-loop diagram with four external legs, which is finite. 

In order to perform the numerical computation of DR(z) we can 
calculate explicitly the lowest ~,'s and perform the product (63). How- 
ever, it is important to improve this procedure by evaluating the asymptotic 
behavior of the large t , 's .  Let us discuss in some detail the three-dimensional 
case. 

All the eigenvalues are real and positive, since the operator 
(--A + 1)-l/zqbc2(x)(--A + 1) -1/2 is Hermitian and positive. Let N(A) be the 
number of eigenvalues smaller than A. Equivalently N(A) may be defined as 
the number of eigenvalues of the Schr6dinger problem 

H = p2 _ 3/~q)c2(x) (64) 

with an energy smaller than minus one. The asymptotic behavior of N(A) 
for A large may thus be obtained from this last remark, since it is known that 
the asymptotic number B(V) of bound states in a large attractive potential 

- V is correctly given by the Thomas-Fermi approximation as (18) 

B(V) ,,~ (1/6~ -2) f dax Va/2(x) + O(V ~/2) 

In the present problem since V(x) = 3Aqbc~(x) this gives 

(65) 

The method will thus consist in using this asymptotic information together 
with the explicitly computed lowest eigenvalues. This procedure turns out to 
be quite useful in order to improve the convergence, as will be shown below. 
Specifically, this is done in the following way. Let p(,~) = dN/dA be the 

N(A) ,,~ (31'2/2~r2)&A 3/2 = C)O/2 (66) 
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exact density of  eigenvalues and p~=(A) = ~CA 1/2. Then from (63) we may 
write 

DR(z)=expfldAP(~)[In(l -~) +-~1 

• + ~ 1 )  (67) 

which, for large X, reduces to 

DR(z)={~<_~(1-~)exp~}exp(-~Cz2X -1/2) (68) 

Given the numerical value 

C = (31~2/2~-2)Ia = 2.78083 (69) 

this gives a correction factor to the truncated product which is about 50% 
for X ~ 50 at z = 1. Furthermore, in order to avoid numerical oscillations 
when X passes through an eigenvalue, the correction factor may be replaced 
by an asymptotically equivalent one, namely 

D~(z)=f,~=r-~(1-~)exp~}exp(-IC4'aN-l'3z2 ) (70) 

in which it is understood that the ~, are ordered increasingly with n. The 
lowest 900 A, counted with their multiplicity have been computed by solving 
the Schr6dinger equation (64) expanded in partial waves up to /max = 14, 
which corresponds to a ,~ of  about 48. In Table I we reproduce the results for 
the lowest 2t, up to X = 20. 

Table l .  Eigencouplings of ( - A  + 1 - 3Xr 2) up t o ~  = 20 

l = 0  1 2 3 4 5 6 7 8 

0.33333 1.00000 2.11863 3.69159 5.71487 8.18630 11.1049 14.4703 18.2822 
1.38758 2.46066 4.02308 6.06067 8.55922 11.5114 14.9137 18.7645 
3.11042 4.57446 6.56661 9.05841 12.0251 15.4529 19.3353 
5.49860 7.34474 9.75643 12.6936 16.1213 
8.55053 10.7730 13.5965 16.9715 

12.2653 14.8599 18.0894 
16.6423 19.6059 
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7, 

Fig. 2 

In order to see how the asymptotic regime (66) is reached, we have 
represented the true N(~) in Fig. 2 and compared it with Nas(,~). The results 
a r e  

/~R(1) = 10.544 + 0.004 (71a) 

D~(1/3) = 1.4571 + 0.004 (71b) 

in which the errors come from the extrapolation from N = 900 to infinity. 
Putting the results into Eq. (50) for the four-point function at zero 

momentum, we obtain 

N + 8  
g = g o  - g o  s 8"-"-~ + "'" + ~ 1 7 6  + "'" (72) 
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with 

a = 4/I4 (74) 

b = 3 + �89 (75) 

C - -  
2N/2 + 2 3 - 8/2~.-  2 

F(�89 + 2) 
(I12'~2{I6 1) 3/2 

~ l  ~ ,L-  

x [DR(l)] - 1/2 [/)R(1/3)] -(N - 1>/2 (76) 

Inverting (72) for go in terms of g, we obtain 

N + 8  
go = g + g 2 _ _  + . . .  + 3Kg~ + . . .  (77) 

81r 

( 3K ~ - o ~  exp 8~ra 
K ~ o o  

The field strength renormalization is asymptotically (i.e., for large K) 
negligible, and thus we can use the formula 

d 

This leads to 

N +  8 g  2 ~(g) = - g  + ~ + " "  + g~K + " "  (79) 

with 

~K = (-)KaKF(K + b + 1)c exp 
N + 8  

8~-a 
(80) 

Using, as in Ref. 9, the normalization 

8~ 
g = N + 8  

- -  V ( 8 1 )  

t~(g ) = N +____~8 fi(V) 
8~ 

(82) 

we find 

/~(V) = - g + v ~ + ..- + / ~  v ~= + ... 

fiK "~ ( -  A)gF(K + B) C 
K ~  oO 

(83) 

( 8 4 )  
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Table II. Fredholm Determinants and Integrals 

/)R(1/3) /1 14 I~ //3 

3 10.544 1.4571 31.691522 75.589005 659.868352 13.563312 
• • 

2 135.3 1.465 15.10965 23.40179 71.08023 9.99118 
• • 

wi th  

A = 32~r/(N + 8)I~ 

B = 4 + � 8 9  

C = ( U  + 8)2m2-~3 -8'2 [I~2~2[~ ) s,2 
7raI~(2 + �89 \ / 4  ] ~I ,  - 1 

1/~[ - / l \ q  -(N-~)/2 exp(  

A s imi lar  ca lcu la t ion  in  two d imens ions  gives, i f  

4rr 
g=N+--------~V 

a n d  

(85) 

(86) 

{ t ~ ( v )  = - v + v ~ + . . .  + / 3 K  z '~ + . . .  

N+8) 
32 I4 (87) 

(88) 

(89) 

Table III. Parameters Characterizing the Asymptot ic Behavior 

d = 3 ,  N = 0  d - 3 ,  N = l  d = 3 ,  N = 2  

A 0.1662460 0.14777422 0.1329968 
B 4 4.5 5 
C (8.5489 _+ 16.10 -4) (3.9962 + 6.10 -4) (1.6302 + 3.10 -4) 

x 10 -~ x 10 -2 x 10 -2 

d = 3 ,  N = 3  d = 2 ,  N = l  

A 0.12090618 0.238659 
B 5.5 4 
C (5.9609 + 10 -3) (4.886 + 5.10 -4) 

x 10 -a x 10 -2 
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a formula for/3K analogous to (84) with 

A = 16~r/(N + 8)14 

B = 7/2 + N / 2  

C = (U + 8)2~v-3~/% "-5/2 ~I12~2[~ _ 1] 
P(2 + I N )  \ I4 ] \ I ,  / 

x [/~n(1)]- 1'2 [/~n (~) ] -<N- 1~/2 exp ( - - -  

(90) 

(91) 

N+8) 
16~r I4 (92) 

In order to complete this calculation we give the numerical results of  Table II, 
where 

/2 = (1 - �88 (93) 

/3 = / 1  (94) 

H3 = f dax x2(Pc3(x) (95) 

This leads to the results o f  Table III .  
These asymptot ic  formulas for K large are now compared  with the 

explicit calculations o f  Ref. 9. Table IV gives the/3K provided by perturbat ion 
theory, and also these numbers  divided by their leading asymptotic  estimates 

BK = I/~KI/F(K + B)A ~ (96) 

For  K = 7, d = 3,/~K is within 5% of  its asymptot ic  limit for N = 0 or  1. 
However,  the agreement gets worse for larger values o f  N, indicating a 
slower approach to the asymptot ic  limit. This is to be connected with the 
crossover to the large-N regime, in which the coefficients o f  the powers o f  
1/N are analytic at g = 0. 

The critical exponents are calculated f rom two additional series 

(N + 2) 
% ( V )  = - V ( N  + 8---~ + "" + VK~K + "'" (97) 

V2(N + 2) 
~(V) = 2(N + 8) 2 + "'" + V~c3K + "'" (98) 

Table V. The Normal izat ion of the  Large-Order Behavior  of rl4(g) and ~l(g) 

d = 3 ,  N = 0  d - 3 ,  N =  1 d = 3 ,  N = 2  d = 3 ,  N = 3  d = 2 ,  N -  1 

C' 1.0107 • 10 -2 6.2991 • 10 -3 3.0836 x 10 -3 1.2813 • 10 -8 1.049 • 10 -2 
C" 2.8836 • 10 -8 1.7972 • 10 -3 0.8798 • 10 -8 0.3656 • 10 -a 3.468 • 10 -8 
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from the zero of/3(V): 

~3(v*) = 0, y ( v * )  > 0 

7/~(V*) = -q + (l/v) -- 2 

~ ( v * )  = ,7 

Similar calculations lead to the asymptotic formulas 

y,r ~ (-)KA'CF(K + B ' )C '  
K--* cO 

K ~ o o  

with 

and 

B ' = � 8 9  N +  5) 

B" = �89 + N +  3) 

, _ N + 2  19 
C ~ 8rr i1--- ~ 

C '  = 
_ N + 2  12 

c ~ 4~r 11-- 5 

in three dimensions 

in two dimensions 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

(lO5) 

C " =  C'  2H3 
I ld(4 - d) 

in which the Ip and / /3  have been defined in Eqs. (52) and (95) and tabulated 
in Table II. The results are given in Table V and compared with the perturba- 
tion series in Tables VI and VII. 
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